嵌入式—模块代码(一)

🎬 秋野酱:《个人主页》
🔥 个人专栏:《Java专栏》《Python专栏》

⛺️心若有所向往,何惧道阻且长

文章目录

    • 程序结构
    • GPIO操作
    • UART操作
    • 接收逻辑
    • 发送

以下模板代码均基于官方2023.07.17版本。

程序结构

#include "Config.h"
#include "GPIO.h"
#include "Delay.h"

int main() {
    EAXSFR();
    GPIO_config();
    EA = 1;

    while(1) {
    }
}

GPIO操作

初始化所有

P0M1 = 0; P0M0 = 0;
P1M1 = 0; P1M0 = 0;
P2M1 = 0; P2M0 = 0;
P3M1 = 0; P3M0 = 0;
P4M1 = 0; P4M0 = 0;
P5M1 = 0; P5M0 = 0;
P6M1 = 0; P6M0 = 0;
P7M1 = 0; P7M0 = 0;

使用宏配置IO口

#define	GPIO_Pin_0		0x01	//IO引脚 Px.0
#define	GPIO_Pin_1		0x02	//IO引脚 Px.1
#define	GPIO_Pin_2		0x04	//IO引脚 Px.2
#define	GPIO_Pin_3		0x08	//IO引脚 Px.3
#define	GPIO_Pin_4		0x10	//IO引脚 Px.4
#define	GPIO_Pin_5		0x20	//IO引脚 Px.5
#define	GPIO_Pin_6		0x40	//IO引脚 Px.6
#define	GPIO_Pin_7		0x80	//IO引脚 Px.7
#define	GPIO_Pin_LOW	0x0F	//IO低4位引脚
#define	GPIO_Pin_HIGH	0xF0	//IO高4位引脚
#define	GPIO_Pin_All	0xFF	//IO所有引脚

//准双向口	P01为例
P0_MODE_IO_PU(GPIO_Pin_1);
//高阻输入	P01为例
P0_MODE_IN_HIZ(GPIO_Pin_1);
//漏极开路	P01为例
P0_MODE_OUT_OD(GPIO_Pin_1);
//推挽输出	P01为例
P0_MODE_OUT_PP(GPIO_Pin_1);

使用函数配置IO口

void GPIO_config(void) {
	GPIO_InitTypeDef	GPIO_InitStructure;		//结构定义
	GPIO_InitStructure.Pin  = GPIO_Pin_3;		//指定要初始化的IO,
	GPIO_InitStructure.Mode = GPIO_PullUp;	//指定IO的输入或输出方式,GPIO_PullUp,GPIO_HighZ,GPIO_OUT_OD,GPIO_OUT_PP
	GPIO_Inilize(GPIO_P5, &GPIO_InitStructure);//初始化
}

UART操作

添加NVIC.c UART.c UART_Isr.c
配置EA = 1
头文件

#include "UART.h"
#include "NVIC.h"
#include "Switch.h"

初始化

void UART_config(void) {
	// >>> 记得添加 NVIC.c, UART.c, UART_Isr.c <<<
    COMx_InitDefine		COMx_InitStructure;					//结构定义
    COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTx
    COMx_InitStructure.UART_BRT_Use   = BRT_Timer1;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)
    COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200
    COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLE
    COMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLE
    UART_Configuration(UART1, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4

  	NVIC_UART1_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3
    UART1_SW(UART1_SW_P30_P31);		// 引脚选择, UART1_SW_P30_P31,UART1_SW_P36_P37,UART1_SW_P16_P17,UART1_SW_P43_P44
}
void UART_config(void) {
    COMx_InitDefine		COMx_InitStructure;					//结构定义
    COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTx
    COMx_InitStructure.UART_BRT_Use   = BRT_Timer2;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)
    COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200
    COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLE
    COMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLE
    UART_Configuration(UART2, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4

  	NVIC_UART2_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3
    UART2_SW(UART2_SW_P10_P11);		// 引脚选择, UART2_SW_P10_P11,UART2_SW_P46_P47
}
void UART_config(void) {
    COMx_InitDefine		COMx_InitStructure;					//结构定义
    COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTx
    COMx_InitStructure.UART_BRT_Use   = BRT_Timer3;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)
    COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200
    COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLE
    COMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLE
    UART_Configuration(UART3, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4

  	NVIC_UART3_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3
    UART3_SW(UART3_SW_P00_P01);		// 引脚选择, UART3_SW_P00_P01,UART3_SW_P50_P51
}
void UART_config(void) {
    COMx_InitDefine		COMx_InitStructure;					//结构定义
    COMx_InitStructure.UART_Mode      = UART_8bit_BRTx;	//模式, UART_ShiftRight,UART_8bit_BRTx,UART_9bit,UART_9bit_BRTx
    COMx_InitStructure.UART_BRT_Use   = BRT_Timer4;			//选择波特率发生器, BRT_Timer1, BRT_Timer2 (注意: 串口2固定使用BRT_Timer2)
    COMx_InitStructure.UART_BaudRate  = 115200ul;			//波特率, 一般 110 ~ 115200
    COMx_InitStructure.UART_RxEnable  = ENABLE;				//接收允许,   ENABLE或DISABLE
    COMx_InitStructure.BaudRateDouble = DISABLE;			//波特率加倍, ENABLE或DISABLE
    UART_Configuration(UART4, &COMx_InitStructure);		//初始化串口1 UART1,UART2,UART3,UART4

  	NVIC_UART4_Init(ENABLE,Priority_1);		//中断使能, ENABLE/DISABLE; 优先级(低到高) Priority_0,Priority_1,Priority_2,Priority_3
    UART4_SW(UART4_SW_P02_P03);		// 引脚选择, UART4_SW_P02_P03,UART4_SW_P52_P53
}

● UART_BaudRate:波特率
● UARTx_SW: 引脚
● UART_BRT_Use: 发生器
● UART_Configuration中的UART1

接收逻辑

if(COM1.RX_TimeOut > 0) {
    //超时计数
    if(--COM1.RX_TimeOut == 0) {
        if(COM1.RX_Cnt > 0) {
            // 这里处理收到的数据,做具体的逻辑,可以调用自己的on_uart1_recv
            for(i=0; i<COM1.RX_Cnt; i++)	{
                // RX1_Buffer[i]存的是接收的每个字节,写出用 TX1_write2buff
            }
        }
        COM1.RX_Cnt = 0;
    }
}

// 不要处理的太快
delay_ms(10);
if(COM2.RX_TimeOut > 0) {
    //超时计数
    if(--COM2.RX_TimeOut == 0) {
        if(COM2.RX_Cnt > 0) {
            for(i=0; i<COM2.RX_Cnt; i++)	{
                // RX2_Buffer[i]存的是接收的数据,写出用 TX2_write2buff
                // TODO: 做具体的逻辑 on_uart2_recv
            }
        }
        COM2.RX_Cnt = 0;
    }
}
if(COM3.RX_TimeOut > 0) {
    //超时计数
    if(--COM3.RX_TimeOut == 0) {
        if(COM3.RX_Cnt > 0) {
            for(i=0; i<COM3.RX_Cnt; i++)	{
                // TODO: RX3_Buffer[i]存的是接收的数据
                // TODO: 做具体的逻辑 on_uart3_recv
            }
        }
        COM3.RX_Cnt = 0;
    }
}
if(COM4.RX_TimeOut > 0) {
    //超时计数
    if(--COM4.RX_TimeOut == 0) {
        if(COM4.RX_Cnt > 0) {
            for(i=0; i<COM4.RX_Cnt; i++)	{
                // TODO: RX4_Buffer[i]存的是接收的数据
                // TODO: 做具体的逻辑 on_uart4_recv
            }
        }
        COM4.RX_Cnt = 0;
    }
}

发送

UART1

TX1_write2buff(xx);// 写一个byte
PrintString1(""); // 写字符串
UART2

TX2_write2buff(xx);// 写一个byte
PrintString2(""); // 写字符串
UART3

TX3_write2buff(xx);// 写一个byte
PrintString3(""); // 写字符串
UART4

TX4_write2buff(xx);// 写一个byte
PrintString4(""); // 写字符串

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/603986.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java】IO流:字节流 字符流 缓冲流

接续上文&#xff0c;在这篇文章将继续介绍在Java中关于文件操作的一些内容【Java】文件操作 文章目录 一、“流”的概念1.“流”的分类1.1输入流和输出流1.2字节流和字符流 字节和字符的区别&#xff1f;为什么要有字符流&#xff1f;1.3节点流和处理流 字符流自带缓冲区&…

【Linux——Centos7安装RabbitMQ】 RabbitMQ无法连接

到这一步是基本已经装好了&#xff0c;现在是在开放端口&#xff0c;我这个报错是因为我的防火墙是处于关闭状态&#xff0c;所以在开放端口时会报防火墙为运行&#xff0c;把防火墙打开&#xff0c;在开放端口&#xff0c;就可以访问到了 重启防火墙&#xff1a; systemctl …

【无标题】基于GIS、Python机器学习技术的地质灾害风险评价、易发性分析与信息化建库及灾后重建中的实践技术

理解地质灾害形成机理与成灾模式&#xff1b;从空间数据处理、信息化指标空间数据库构建、致灾因子提取&#xff0c;空间分析、危险性评价与制图分析等方面掌握GIS在灾害危险性评价中的方法&#xff1b;运用地质灾害危险性评价原理和技术方法 原文链接&#xff1a;基于GIS、Py…

DeepSeek API文档:创建对话补全的指南

DeepSeek平台不仅提供了一个用户友好的聊天界面&#xff0c;还为开发者提供了强大的API接口&#xff0c;使他们能够创建和集成智能对话补全功能。以下是关于如何使用DeepSeek API创建对话补全的详细介绍。 DeepSeek API概述 DeepSeek的API允许开发者通过编程方式与DeepSeek的…

应用软件安全保证措施方案书

系统安全保证措施方案—word原件 软件全套资料进主页获取或者本文末个人名片直接获取。

【文章转载】ChatGPT 提示词十级技巧: 从新手到专家

学习了微博网友宝玉xp老师《ChatGPT 提示词十级技巧: 从新手到专家》 个人学习要点&#xff1a; 1、关于提示中避免使用否定句&#xff0c;播主说&#xff1a;“没有人能准确解释为什么&#xff0c;但大语言模型在你告诉它去做某事时&#xff0c;表现似乎比你让它不做某事时更…

识货小程序逆向

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01;wx a15018601872&#xff0c;x30184483x…

Java进阶07集合(续)

Java进阶07 集合&#xff08;续&#xff09; 一、数据结构&#xff08;树&#xff09; 1、关于树 1.1 相关概念 节点&#xff1a;树中每个单独的分支 节点的度&#xff1a;每个节点的子节点数量 树高&#xff1a;树的总层数 根节点&#xff1a;最顶层节点 左子节点&…

6层板学习笔记2

说明:笔记基于6层全志H3消费电子0.65MM间距BGA 67、多层板的电源建议直接大面积铺铜,不建议走线,铺铜充分满足其载流能力 68、凡亿推荐表层1OZ的铜厚线宽20MIL能承载1A的电流,内层0.5OZ的铜厚线宽为40MIL能承载1A的电流,过孔直径20MIL(0.5MM)能承载1A左右的电流,实际设…

typescript的入门到吐槽:看了typescript,发现前端真的卷,

typescript TypeScript 是一种由微软开发的自由和开源的编程语言。它是 JavaScript 的一个超集&#xff0c;而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程。 TypeScript 与 JavaScript 的区别 其实就是对JavaScript的封装&#xff0c;把一个弱类型语言封…

remmina无法连接远程桌面,Remmina无法连接远程桌面的原因与解决办法

在解决Remmina无法连接远程桌面的问题时&#xff0c;我们需要考虑多种可能的原因&#xff0c;并采取相应的解决办法。以下是一些常见的原因及其对应的解决方案&#xff1a; 1、网络问题 原因&#xff1a;不稳定的网络连接或中断可能导致无法建立远程桌面连接。 解决办法&#x…

MySQL数据库---增删查改汇总

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文着重整理MySQL数据库增删查改功能 主要是整理语法 争取做到要用什么语法 可以快速找到复制粘贴 增添语法 INSERT into tab(列名,列名,列名) values(内容,内容,内容); 插入一行数据 INSERT into tab(列名,…

Kubernetes最小单元Pod介绍及配置

1.1 Pod介绍 Pod是Kubernetes中的一个基本构建块&#xff0c;它是一个逻辑主机&#xff0c;用于托管一个或多个容器。 Pod中的容器共享网络和存储资源&#xff0c;并且通常作为一个单元一起调度和管理。 Pod为容器提供了一个共享的环境&#xff0c;使得容器之间可以方便地通信…

Android进阶之路 - 静态会员进度条

年后这个新版本加入了VIP模块&#xff0c;有幸正好由我来负责&#xff0c;可以再积累一下这方面的知识。 那段时间看了一本书&#xff0c;书中说到初级码农的特性之一就是完全集中于某些功能&#xff0c;忽略了了很多成长机会&#xff0c;所以重复性劳作带来的成长值有限&#…

基于51单片机的智能台灯proteus仿真设计( proteus仿真+程序+原理图+报告+讲解视频)

基于51单片机的红外光敏检测智能台灯控制系统仿真( proteus仿真程序原理图报告讲解视频&#xff09; 1.主要功能&#xff1a; 基于51单片机的红外检测光照检测智能台灯仿真设计 1、检测光照强度并显示在数码管上。 2、具备红外检测人体功能。 3、灯光控制模式分为自动模式…

抓取Google时被屏蔽怎么办?如何避免?

在当今数字化时代&#xff0c;数据采集和网络爬取已成为许多企业和个人必不可少的业务活动。对于爬取搜索引擎数据&#xff0c;特别是Google&#xff0c;使用代理IP是常见的手段。然而&#xff0c;使用代理抓取Google并不是一件轻松的事情&#xff0c;有许多常见的误区可能会导…

vue 语法2

【5】条件渲染和列表渲染 &#xff08;1&#xff09;条件渲染v-if v-else-if v-else 条件渲染根据表达式的真假值来渲染不同的元素或组件。 v-if&#xff1a;当表达式的值为真时&#xff0c;渲染该元素或组件。 v-else-if&#xff1a;当前面的 v-if 或 v-else-if 的表达式为假…

【C++】STL — vector的接口讲解 +详细模拟实现

前言: 本章我们将学习STL中另一个重要的类模板vector… vector是表示可变大小数组的序列容器。就像数组一样&#xff0c;vector也采用的连续存储空间来存储元素。但是又不像数组&#xff0c;它的大小是可以动态改变的本质讲&#xff0c;vector使用动态分配数组来存储它的元素v…

智慧公厕的核心技术详解:物联网、云计算、大数据、自动化控制

公共厕所是城市的重要组成部分&#xff0c;而智慧公厕的建设和管理正成为城市发展的重要方向。智慧公厕的核心技术即是物联网、云计算、大数据和自动化控制。下面将以智慧公厕源头实力厂家广州中期科技有限公司&#xff0c;大量精品案例项目现场实景实图实例&#xff0c;详细介…

Sealos急速部署生产用k8s集群

最近一段时间部署k8s全部使用sealos了&#xff0c;整体使用感觉良好&#xff0c;基本没有什么坑。推荐给大家。 使用 Sealos&#xff0c;可以安装一个不包含任何组件的裸 Kubernetes 集群。 最大的好处是提供 99 年证书&#xff0c;用到我跑路是足够了。不用像之前kubeadm安装…
最新文章